Dry Mechanical Edge and Surface Finishing for Rotating Aerospace Components
- Dr. Michael Massarsky
- Jan 4, 2017
- 2 min read
Turbo-Abrasive Machining -- for more info: contact Dr Michael Massarsky michael@turbofinish.com or 917 518 8205
See the Turbo-Abrasive Machining demonstration video:
Turbo-Abrasive Machining (TAM) is a new process for deburring and surface conditioning sophisticated multi-axis machined parts. Many parts, because of size and shape factors, can not be finished by a mass media technique but need manual intervention for final abrasive finishing. Apart from safety and production line/time considerations, a significant disadvantage of manual deburring is its impact on quality control and assurance procedures, which have often been computerized at great cost. The TAM process addresses these problems by automating the final machining and finishing production steps.
In TAM, fluidized bed technology is utilized to suspend abrasive or even peening materials in a specially designed chamber: Part surfaces are exposed to and interact with the fluidized bed materials on a continuous basis by high speed rotational or oscillational motion in an entirely dry environment.

The combination of abrasive envelopment and high speed rotating contact can produce important functional metal surface conditioning effects and deburring and radius formation very rapidly. Because abrasive operations are performed on all parts of rotating components simultaneously, the part and feature uniformities achieved are very hard to duplicate by other methods. In addition, sophisticated computer control technologies can be applied to create processes tailored for particular parts.
Although the abrasive materials used for TAM processing are in some ways similar to grinding and blasting materials, the surface condition produced is unique. One reason for this is the multi-directional and rolling nature of abrasive particle or peening particle contact with part surfaces. Surfaces are characterized by a homogenous, finely blended abrasive pattern developed by the non-perpendicular nature of abrasive attack.
There is no perceptible temperature shift in the contact area and the micrto-textured random abrasive pattern is a highly attractive substrate for subsequent coating operations. In addition to the foregoing, the process has additional advantage, in that it develops significant beneficial compressive stress and stress equilibrium in parts as well as edge and surface finish conditions that are isotropic, plateaued or planarized surface characteristics and have negatively or neutrally skewed low micro-inch surface profiles.
SEE ALSO: www.turbofinish.wordpress.com FOR TECHNICAL INFORMATION CONTACT: Dr. Michael Massarsky michael@turbofinish.com
Comments